contohsoal dan pembahasan tentang bilangan bulat. AJAR HITUNG. Soal & pembahasan Matematika SD, SMP & SMA. kita tentukan dulu perkalian 2 bilangan yang jawabannya 34. Yaitu: 1 x 34 = 34 2 x 17 = 34-1 x (-34) = 34 Apabila bilangan yang lebih besar dibagi dengan bilangan yang lebih kecil, hasil baginya adalah 3 dan sisanya 5. Selisih
Squad pasti sudah paham tentang operas i penjumlahan dan pengurangan bilangan bulat. Nah, dua operasi yang akan kita bahas kali ini juga merupakan operasi dasar dalam menghitung suatu bilangan.Mari pelajari konsep tentang perkalian dan pembagian bilangan bulat. 1. Perkalian. Operasi perkalian biasanya disimbolkan dengan tanda silang (Γ) atau tanda titik (β).
Berikutini contoh pertanyaan tentang pembagian bilangan bulat 1. Apakah pembagian bilangan bulat dapat menggunakan garis bilangan? 2. Bagaimana cara membagi bilangan bulat dengan 0? Buatlah pertanyaan lainnya. Ayo Mencoba 1. Tentukan hasil pembagian bilangan bulat berikut ! a. -25 : 5 = b. 400 : (-20) : 10 = c. -600 : 20 : (-15
Fast Money. β Bilangan bulat adalah bilangan yang terdiri dari bilangan bulat negatif, positif, dan juga nol. Bilangan bulat dapat dioperasikan dengan sifat tertentu. Sifat-sifat operasi bilangan bulat adalah Sifat tertutup Sifat komutatif Sifat asosiatif Sifat distributif Sifat identitas Sifat tertutup Sifat operasi bilangan bulat yang pertama adalah sifat tertutup. Sifat tertutup adalah saat bilangan bulat mengalami operasi penjumlahan, pengurangan, dan perkalian, maka hasilnya akan selalu bilangan juga Mengenal Jenis-jenis Bilangan Matematika Misalnya 5 + 4 = 9 13 β 7 = 5 11 x 2 = 22 Namun, sifat tertutup bilangan bulat tidak berlaku pada operasi pembagian. Karena, pembagian bilangan bulat dapat juga menghasilkan bilangan desimal dan pecahan. Misalnya, 7 2 sama dengan 3,5. Adapun, 3,5 bukanlah bilangan bulat melainkan komutatif Sifat komutatif adalah saat dua bilangan bulat ditambah atau dikalikan, posisinya dapat ditukar dan hasilnya tetap sama. Misalnya 3 x 5 = 5 x 3 3 + 5 = 5 + 3 Baca juga Mengenal Bilangan Negatif dan Contoh Soalnya Sifat asosiatif Sifat operasi bilangan bulat selanjutnya adalah sifat asosiatif. Dilansir dari Splash Learn, sifat asosiatif aalah ketika bilangan bulat ditambahkan atau dikalikan hasilnya akan tetap sama terlepas dari bagaimana mereka dikelompokkan. Misalnya 3 x 5 x 4 = 3 x 5 x 4 7 + 11 + 2 + 6 = 7 + 11 + 2 + 6 Namun, sifat asosiatif tidak berlaku pada pengurangan dan pembagian bilangan bulat.
Rumus Bilangan Bulat Pembagian Cara Mudah Memahami MatematikaHello, Kaum Berotak! Kita semua pasti pernah belajar matematika di sekolah, termasuk rumus bilangan bulat pembagian. Meskipun terdengar rumit, sebenarnya rumus ini sangat mudah dipahami. Pada artikel kali ini, kita akan membahas tentang rumus bilangan bulat pembagian dengan santai dan mudah dipahami. Yuk, simak artikel berikut!Rumus bilangan bulat pembagian adalah rumus matematika yang digunakan untuk menghitung hasil bagi dari dua bilangan bulat. Dalam rumus ini, bilangan yang dibagi disebut sebagai dividen dan bilangan pembagi disebut sebagai divisor. Rumus ini sangat berguna dalam kehidupan sehari-hari, seperti saat kita ingin membagi makanan dengan teman atau membagi jumlah uang dengan Menggunakan Rumus Bilangan Bulat PembagianUntuk menggunakan rumus bilangan bulat pembagian, kita perlu mengikuti beberapa tahapan sebagai berikutTentukan bilangan dividen dan berapa kali divisor dapat dibagi dengan dari pembagian tersebut adalah hasil jika kita ingin menghitung 24 dibagi dengan 3, makaDividen adalah 24 dan divisor adalah berapa kali 3 dapat dibagi dengan 24. Kita dapat melakukan ini dengan cara melakukan pembagian secara berulang-ulang hingga tidak bisa dibagi lagi. Dalam contoh ini, 3 dapat dibagi dengan 24 sebanyak 8 hasil bagi dari 24 dibagi dengan 3 adalah mudah, kan?Cara Menggunakan Rumus Bilangan Bulat Pembagian dengan CepatTerkadang, kita perlu menghitung bilangan bulat pembagian dengan cepat, terutama saat kita berada di ujian atau tes matematika. Untuk menghitung bilangan bulat pembagian dengan cepat, kita dapat menggunakan beberapa teknik berikutMemiliki tabel bilangan bulat pembagian. Dalam tabel ini, kita dapat menuliskan hasil bagi dari bilangan bulat pembagian yang sering muncul, seperti 1/2, 1/3, 1/4, dan kecepatan hitung yang baik. Dalam hal ini, kita perlu sering berlatih hitung cepat dengan rumus bilangan bulat teknik-teknik tersebut, kita dapat menghitung bilangan bulat pembagian dengan cepat dan Soal dan Jawaban Rumus Bilangan Bulat PembagianUntuk membantu memahami rumus bilangan bulat pembagian, berikut adalah beberapa contoh soal dan jawabannyaHitung 16 dibagi dengan 16 dibagi dengan 4 sama dengan 27 dibagi dengan 27 dibagi dengan 3 sama dengan 48 dibagi dengan 48 dibagi dengan 6 sama dengan 72 dibagi dengan 72 dibagi dengan 9 sama dengan 100 dibagi dengan 100 dibagi dengan 10 sama dengan contoh soal di atas, kita dapat melihat bagaimana rumus bilangan bulat pembagian dapat digunakan untuk menghitung hasil bagi dengan mudah dan tadi sedikit pembahasan tentang rumus bilangan bulat pembagian. Meskipun terdengar rumit, namun sebenarnya rumus ini sangat mudah dipahami dan digunakan. Dengan memahami rumus bilangan bulat pembagian, kita dapat menghitung hasil bagi dengan mudah dan cepat, baik dalam kehidupan sehari-hari maupun dalam ujian atau tes matematika. Semoga artikel ini bermanfaat untuk kita semua. Sampai jumpa kembali di artikel menarik lainnya!
Misalkan kamu memiliki 10 buah jeruk yang akan kamu bagikan sama rata kepada 5 orang teman kamu. Pertanyaannya, berapakah jumlah jeruk yang diterima oleh masing-masing temanmu? Tentunya masing-masing temanmu akan mendapat 2 buah jeruk. Nah, peristiwa tersebut merupakan salah contoh bentuk pembagian bilangan bulat. Lalu tahukah kamu bagaimana konsep dan sifat-sifat pembagian bilangan bulat? Untuk menjawab pertanyaan tersebut, silahkan simak secara seksama penjelasan berikut ini. Konsep Pembagian Bilangan Bulat Misalnya pada suatu saat kalian ditanya, βBerapakah nilai a yang memenuhi persamaan 42 7 = a?β Dan pada saat yang lain kalian ditanya lagi, βBilangan berapakan yang dikalikan dengan 7 menghasilkan bilangan 42?β Dari contoh soal ini, apakah keduanya memiliki jawaban yang sama? Kedua soal ini apabila disederhanakan, maka bentuknya adalah seperti berikut. Ternyata, nilai a yang memenuhi jawaban kedua persamaan di atas adalah 6. Lalu apa yang dapat kamu simpulkan dari kedua bentuk pertanyaan tersebut? Operasi pembagian bilangan bulat merupakan kebalikan dari operasi perkalian, sehingga dapat disimpulkan sebagai berikut. Jika a, b, dan c adalah bilangan bulat dan b β 0 maka a b = c jika dan hanya jika a = b Γ c. Operasi pembagian bilangan bulat dapat dinyatakan dalam beberapa bentuk, di antaranya adalah sebagai berikut. Bentuk pembagian di atas dapat digunakan sesuai dengan kebutuhan. Bentuk 148 4 digunakan untuk pembagian yang sederhana, sedangkan bentuk 3 426 biasanya digunakan untuk pembagian yang rumit. Ada beberapa istilah yang perlu diketahui dalam operasi pembagian bilangan bulat, yaitu pembagi, bilangan yang dibagi, hasil bagi, dan sisa pembagian. Agar lebih jelas, perhatikan contoh berikut ini. Mengingat pembagian merupakan kebalikan dari perkalian, maka dapat dituliskan sebagai berikut. a Γ b = c β c a = b atau c b = a Sekarang coba kalian perhatikan tabel berikut! a Γ b = c c a = b c b = a 3 Γ 4 = 12 12 3 = 4 12 4 = 3 3 Γ β4 = β12 β12 3 = β4 β12 β4 = 3 β3 Γ 4 = β12 β12 β3 = 4 β12 4 = β3 β3 Γ β4 = 12 12 β3 = β4 12 β4 = β3 Dari data-data perhitungan pada tabel di atas, maka dapat kita ambil beberapa pola tanda pada pembagian bilangan bulat berikut ini. a. + + = + b. + β = β c. - + = β d. β β = + Dengan demikian dapat kita simpulkan konsep dari pembagian bilangan bulat yaitu sebagai berikut, Hasil bagi dua bilangan bulat yang mempunyai tanda sama selalu positif. Hasil bagi dua bilangan bulat yang mempunyai tanda berbeda selalu negatif. Sifat-Sifat Pembagian Bilangan Bulat Sifat-sifat pembagian bilangan bulat antara lain tidak tertutup, tidak komutatif, tidak asosiatif, tidak distributif, pembagian bilangan bulat dengan nol 0, dan pembagian bilangan bulat oleh nol. Berikut ini adalah penjelasan dan contoh masing-masing sifat tersebut. 1 Tidak Bersifat Tertutup Sifat tertutup adalah sifat operasi hitung pada bilangan bulat yang menghasilkan bilangan bulat juga, perhatikan contoh berikut Contoh β 15 3 = 5 15 dan 3 merupakan bilangan bulat, hasilnya yaitu 5 juga merupakan bilangan bulat. Sekarang coba kalian perhatikan contoh berikutnya. β 4 3 =? Berapakah hasil pembagian antara 4 dengan 3? Apakah kalian menemukan nilai dari 4 3 merupakan bilangan bulat? jawabannya adalah tidak ada. Karena tidak ada bilangan bulat yang memenuhi, maka hal ini sudah cukup untuk menyatakan bahwa pembagian pada bilangan bulat tidak bersifat tertutup. Dengan demikian, dapat kita tuliskan sebagai berikut. Untuk setiap bilangan bulat a dan b, jika a b = c, maka c belum tentu merupakan bilangan bulat. 2 Tidak Bersifat Komutatif Untuk memahami sifat tidak komutatif atau anti komutatif pada pembagian bilangan bulat, perhatikan contoh berikut ini. Contoh β 20 β10 = β2 β β10 20 = β0,5 Dengan demikian, 20 β10 β β10 20 sehingga pada pembagian bilangan bulat tidak berlaku sifat komutatif. Secara umum dituliskan sebagai berikut. Hasil pembagian bilangan bulat tidak pernah sama ketika letak bilangan ditukar. Sifat pembagian seperti ini disebut sifat anti komutatif dan ditulis sebagai berikut a b β b a 3 Tidak Bersifat Asosiatif Untuk memahami sifat anti asosiatif pada pembagian bilangan bulat, perhatikan contoh di bawah ini. Contoh β 12 6 2 = 2 2 = 1 β 12 6 2 = 12 3 = 4 Dengan demikian, 12 6 2 β 12 6 2 sehingga pada pembagian bilangan bulat tidak berlaku sifat asosiatif. Secara umum dituliskan sebagai berikut. Hasil pembagian bilangan bulat tidak pernah sama ketika elemen-elemennya dikelompokkan dengan cara yang berbeda. Sifat pembagian seperti ini disebut sifat anti asosiatif dan ditulis sebagai berikut a b c β a b c 4 Tidak Bersifat Distributif Untuk memahami sifat anti distributif pada pembagian bilangan bulat, perhatikan contoh di bawah ini. Contoh β 30 10 + 5 = 30 15 = 2 β 30 10 + 30 5 = 3 + 6 = 9 β 20 10 β 5 = 20 5 = 4 β 20 10 β 20 5 = 2 β 4 = β2 Dengan demikian, 30 10 + 5 β 30 10 + 30 5 dan 20 10 β 5 β 20 10 β 20 5 sehingga pada pembagian bilangan bulat tidak berlaku sifat distributif baik pada penjumlahan maupun perkalian. Secara umum dituliskan sebagai berikut. Pada operasi pembagian bilangan bulat, tidak berlaku sifat distributif penyebaran. Secara umum, untuk a, b dan c bilangan bulat, maka a b + c = a b + a c a b β c = a b β a c 5 Pembagian Bilangan Bulat dengan Nol Misalkan 5 0 = p β 0 Γ p = 5 Tidak ada satupun pengganti p pada bilangan bulat yang memenuhi 0 Γ p = 5, sehingga dapat disimpulkan bahwa Untuk setiap bilangan bulat a, a 0 tidak terdefinisi. 6 Pembagian Bilangan Bulat oleh Nol Untuk pembagian 0 3 = n, adakah pengganti n yang memenuhi? Perhatikan uraian berikut ini. 0 3 = n β 3 Γ n = 0 Pengganti n yang memenuhi 3 Γ n = 0 adalah 0. Jadi, kesimpulannya adalah sebagai berikut. Untuk setiap bilangan bulat a, berlaku 0 a = 0. Contoh Soal dan Pembahasan Agar kalian dapat memahami konsep dan sifat-sifat operasi pembagian pada bilangan bulat, silahkan pelajari beberapa contoh soal dan penyelesaiannya berikut ini. Contoh Soal 1 Tentukan hasil pembagian bilangan bulat berikut ini. a. 90 5 b. β108 β18 b. 56 β8 c. β84 7 d. 51 β3 e. β72 4 f. 52 0 g. 0 β49 h. β64 β8 i. 128 β8 Jawab a. 90 5 = 18 b. β108 β18 = 6 b. 56 β8 = β7 c. β84 7 = β12 d. 51 β3 = β17 e. β72 4 = 18 f. 52 0 = tidak terdefinisi g. 0 β49 = 0 h. β64 β8 = 8 i. 128 β8 = β16 Contoh Soal 2 Tentukan hasil pembagian berikut jika ada bilangan bulat yang memenuhi. a. 72 6 b. β30 β6 c. 52 3 d. 82 β9 e. β70 4 f. β96 β18 Jawab a. 72 6 = 12 b. β30 β6 = 5 c. 52 3 = tidak ada bilangan bulat yang memenuhi d. 82 β9 = tidak ada bilangan bulat yang memenuhi e. β70 4 = tidak ada bilangan bulat yang memenuhi f. β96 β18 = tidak ada bilangan bulat yang memenuhi Contoh Soal 3 Tentukan pengganti nilai m, sehingga pernyataan berikut menjadi benar. a. m Γ β4 = β88 b. 9 Γ m = β54 c. m Γ β7 = 91 d. m Γ β13 = β104 e. β16 Γ m = 112 f. 8 Γ m = β136 g. m Γ 12 = 156 h. m Γ β6 = β144 Jawab a. m = β88 β4 = 22 b. m = β54 9 = β6 c. m = 91 β7 = β13 d. m = β104 β13 = 8 f. m = β136 8 = β17 g. m = 156 12 = 13 h. m = β144 β6 = 24
tentukan hasil pembagian bilangan bulat